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a b s t r a c t 

This work investigates the dynamics of a single bubble rising in a polymer solution confined in a vertical 

Hele-Shaw cell. Different mixtures of PEO (polyethylene oxide) in water have been used, which exhibit a 

Newtonian viscosity plateau, followed by a shear-thinning behavior above a shear rate of 0.1 to 1, typi- 

cally. Depending on the bubble volume, different regimes are reported. When increasing the bubble vol- 

ume, a transition is observed from a small, round bubble to a cusped bubble, which exhibits a singularity 

at the rear. Below a critical volume, the bubble rises vertically and does not exhibit any apparent shape 

deformation. However, above a critical volume, the cusped bubble develops a peculiar instability. Its front 

flattens at a given angle respect to the horizontal, leading to either a deflection in its trajectory, or its 

fragmentation. We characterize these two dynamics and interpret the fragmentation process in terms 

of a viscous fingering recalling the Saffman–Taylor instability. Interestingly, the finger growth is directly 

controlled by the bubble size. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Bubbles rising in non-Newtonian fluids exhibit a wide range

of puzzling behaviors which have excited different research com-

munities for decades. Indeed, they are widely encountered in na-

ture, from degassing on the ocean floor [1,2] to giant bubbles ris-

ing and bursting on volcanoes [3–6] . In both cases, the complex

nature of the surrounding fluid (soft immersed sediments, bubble-

or crystal-rich magma [1,7–9] ) give rise to non-Newtonian effects,

such as shear-thinning behavior [9,10] . This effect strongly couples

to the bubble rise dynamics and often makes it difficult to inter-

pret the field data. From a more fundamental point of view, ex-

perimental studies of bubbles rising in non-Newtonian fluids have

started in the 60’s, leading to a large amount of either experimen-

tal or numerical works which strongly developed since the 80’s

[11] . Among the many peculiar observations are the deformation

of the bubble shape respect to Newtonian fluids [12–14] , the pres-

ence of a singularity at the bubble rear (cusp) [11,15] and a neg-

ative wake due to elastic properties [16] , oscillations of the bub-

ble shape or velocity [17,18] , or the existence of a discontinuity in

the bubble terminal velocity for a critical volume [19,20] . All these

phenomena have been reported for bubbles rising in unconfined

non-Newtonian fluids. 
∗ Corresponding author. 
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On the other hand, the influence of fluid confinement can have

rastic consequences on the bubbles dynamics and, more gener-

lly, on the gas invasion dynamics in viscous fluids. The pioneer

tudy is the classical Saffman–Taylor problem, consisting in the

njection of air at constant pressure in a horizontal quasi two-

imensional cell (Hele-Shaw cell) filled with a Newtonian, viscous

uid [21,22] . It has been shown that the initially planar interface

eforms, leading to the growth of a finger-like instability, which

as been widely studied theoretically [23] and experimentally [24] .

ore recent studies considered the Saffman–Taylor instability in

he case of non-Newtonian fluids. They pointed out that for weakly

hear-thinning fluids (dilute polymer solutions), using an effective

arcy’s law with the shear-thinning viscosity accounts for the fin-

er width [25] . For strong shear-thinning fluids, narrower fingers

re reported [25] . When the fluid exhibits normal stress effects

ather that shear-thinning effects, however, the experiments show

 finger widening [26,27] . 

Although apparently simple, the problem of a single bubble ris-

ng under its own buoyancy in a confined, non-Newtonian fluid

as not been tackled yet. Even the simpler case of a single bub-

le rising in a viscous, Newtonian fluid such as water, mentioned

y Taylor and Saffman since 1959 [28] , is still investigated nowa-

ays [29–31] . In particular, most studies focus on the triggering of

ath instabilities, an oscillatory bubble motion observed either in

onfined or unconfined cell, and which triggering depends on the

uid rheology [32–35] . 

http://dx.doi.org/10.1016/j.jnnfm.2017.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.01.006&domain=pdf
mailto:valerie.vidal@ens-lyon.fr
http://dx.doi.org/10.1016/j.jnnfm.2017.01.006
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Fig. 1. Sketch of the experimental setup. A single bubble (volume V ) is injected 

at the bottom of a vertical Hele-Shaw cell of width w , filled with a PEO + water 

solution up to a height h 0 . It rises with a vertical velocity U . Its center of mass is M 

[black star, coordinates ( y M , z M )]. 
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Table 1 

Parameters of the Carreau–Yasuda law fitting the rheology of 

the four PEO solutions (see gray lines, Fig. 2 ). 

c [g/L] η0 [Pa s] τ [s] n [-] a [-] 

3 0 .12 0 .69 0 .59 2 .76 

4 0 .49 1 .92 0 .52 2 .04 

5 1 .37 4 .19 0 .48 2 .02 

6 4 .12 6 .09 0 .40 1 .12 
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Here, we present the experimental study of a single bubble ris-

ng in a vertical Hele-Shaw cell. The surrounding fluid is a solution

f long polymer chains (see Section 2.2 ), characterized by a strong

hear-thinning behavior. The polymer concentration is chosen high

nough so that (1) non-Newtonian effects are significant and (2)

he local viscosity is always high enough to prevent the formation

f the classical path instabilities. We report a new type of insta-

ility ( Section 3 ), leading to either the bubble horizontal deflection

r fragmentation. 

. Experimental setup 

.1. Description 

The experimental setup consists of a Hele-Shaw cell made of

wo glass plates (width w = 28 . 3 cm, height 40 cm, gap e = 2 mm),

hich are systematically removed and carefully cleaned with wa-

er, ethanol and optical paper before each series of experiments.

he cell is then filled with a polymer solution (see Section 2.2 ) up

o a height h 0 � 30 cm ( Fig. 1 ). Air is injected manually through

 nozzle (inner diameter 1 mm) by means of a syringe (capacity

0 mL). By tuning the amplitude and velocity of the injection, the

olume V of the single injected bubble can be varied, typically be-

ween 0.01 and 1.5 mL (see Section 2.3 ). After the injection, the

ubble rises by buoyancy. We denote U its vertical velocity and M

ts center of mass [coordinates ( y M 

, z M 

)] ( Fig. 1 ). The origin of the

oordinates (0, 0) is taken at the injection nozzle, at the bottom

enter of the cell. 

A homogeneous backlight is ensured by a transparency flat

iewer (Just NormLicht, Classic Line) located behind the cell. Direct

isualization of the bubble dynamics is performed using a video

amera (PixeLink PL-B781) with an adjustable lens (12.5–75 mm

ith a focal distance of 1.2 m), a resolution of 1280 × 416 pixels

nd a frame rate of 41 fps. 

.2. Fluids characterization 

The fluids used in these experiments are polymer solutions of

olyethylene oxide (PEO) in water. The PEO is sold as a white pow-

er which can be diluted in water at different concentrations, mak-

ng it possible to tune the rheological properties of the mixture

PEO+water]. It is characterized by a high molecular weight, M w 

=

 × 10 6 g/mol (Sigma-Aldrich, 372838). For polymer solutions, one

an define the entanglement concentration of the polymer chains

s 

 

∗ = 

M w 

(4 / 3) πR 

3 
g N a 

, (1) 

here M w 

is the molecular weight, R g the gyration radius of the

olymer and N a the Avogadro number [36] . For the PEO described

bove, the entanglement concentration is C ∗ = 0 . 04 g/L. Four differ-

nt polymer solutions were prepared with the following concentra-

ions: c = [75 , 100 , 125 , 150] C ∗, corresponding to c = [3 , 4 , 5 , 6] g/L.

hese high concentrations ensure that (1) the polymeric chains are

ell-entangled, (2) the viscosity is higher than the water viscosity

nd (3) the non-Newtonian effects will be non-negligible in our

xperiment. The value of the surface tension has been measured

sing a commercial tensiometer (Tracker, Teclis) based on the ris-

ng bubble technique, equivalent to the pendant drop [37,38] . For

he solution at c = 100 C ∗, the surface tension is σ = 64 ± 2 mN/m.

t is assumed to be the same for all the polymer solutions. 

The rheological properties of the polymer solutions have been

haracterized by a rheometer (Bohlin C-VOR 150) with a cone-

lane geometry (diameter 60 mm, angle 2 °). Fig. 2 a displays the

uids dynamic viscosity η as a function of the applied shear rate

˙ . The four polymer solutions exhibit a viscosity between about

0–10 0 0 times the viscosity of water, and a shear-thinning behav-

or above a critical shear rate ˙ γc , in agreement with previous stud-

es on PEO solutions rheology [39] . Note that ˙ γc � 0 . 1 –1 s −1 , of the

rder of magnitude of the shear rates in our experiments. 

The shear-thinning behavior of entangled flexible polymers has

een often modeled by the Carreau law, which takes into account

oth the Newtonian plateau at low shear rate and the decreasing

lope at higher shear-rate [40] . However, we observe slight dif-

erences in the decreasing slope for the different concentrations,

hich is not compatible with the power −1 / 2 predicted by this

imple law. Here, we use the more generalized Carreau–Yasuda law

41] 

= η∞ 

+ 

η0 − η∞ 

[ 1 + (τ ˙ γ ) a ] 
1 −n 

a 

(2) 

here η0 is the viscosity at zero shear rate, η∞ 

the viscosity at in-

nite shear rate (or solvent viscosity), τ a characteristic time, n a

imensionless exponent and a a dimensionless parameter describ-

ng the transition between the first Newtonian plateau and the

hear-thinning region [41] . For all the solutions, the solvent is wa-

er and η∞ 

= 10 −3 Pa s. Table 1 summarizes the fitting parameters

 η0 , τ , n, a ) for the PEO solutions of different concentrations (see

ray lines in Fig. 2 ). 

Fig. 2 b displays the first normal stress coefficient, ψ 1 = N 1 / ̇ γ
2 ,

here N 1 is the first normal stress difference for the four PEO

olutions. For PEO solutions, the first normal stress difference is

redicted to increase quadratically with the shear rate [42] . How-

ver, a less-that-quadratic behavior is observed with ψ 1 decreasing

ith ˙ γ , as already reported for PEO-water mixtures and within the

ame order of magnitude than in the literature [39] . 

The viscoelastic properties of the fluids have been measured

ith a rheometer TA Instruments, AR100 with a cone-plate ge-

metry of diameter 40 mm, angle 2 °. Fig. 2 c displays the elastic
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Fig. 2. (a) Viscosity η as a function of the imposed shear rate ˙ γ for the polymer so- 

lutions [ c = 3,4,5,6 g/L]. Measurements are performed for increasing and decreasing 

˙ γ [waiting time �t = 10 s per point]. No hysteresis is reported. The gray lines cor- 

respond to the Carreau–Yasuda law (see Eq. (2) and Table 1 for fitting parameters) 

(b) First normal stress difference coefficient, ψ 1 = N 1 / ̇ γ
2 as a function of ˙ γ . (c) Elas- 

tic ( G ′ , solid lines) and viscous ( G ′ ′ , dashed lines) modulii as a function of frequency 

[ γ = 1 , same symbols than (a,b)]. Inset: Relaxation time τ from the Carreau–Yasuda 

model [ 	 , see (a) and Table 1 ] and from the viscoelastic properties (crossover, �). 
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( G 

′ ) and viscous ( G 

′ ′ ) modulii obtained by performing a frequency

sweep for the four concentrations at fixed strain γ = 1 , corre-

sponding roughly to the strain order of magnitude in our exper-

iments. The fluids relaxation time (inset, Fig. 2 c) can be extracted

either from the Carreau–Yasuda fitting ( τ , Table 1 ) or from the

crossover between the G 

′ and G 

′ ′ curves ( τ ve , Fig. 2 c). Both estima-

tions are close, going from about 0.7 s to 6 s from the lowest to the

highest concentration. Note that the value of τ ve does not change

significantly when performing a frequency sweep at γ = 0 . 1 . 

For sake of comparison, we conducted experiments with a

purely Newtonian liquid, consisting of a mixture of glycerol and

water of viscosity 0.1 Pa s. This viscosity has been chosen to match

the average viscosity experienced by a bubble rising in the c =
4 g/L solution, where ˙ γ can be estimated of the order of 1–10 s −1 

for our experimental range of bubble size and velocity. 
.3. Bubble volume 

As the bubble injection is hand-made (see Section 2.1 ), it is a

riori difficult to control precisely its volume. However, the goal

ere is to explore a wide range of volumes, without any pre-

stablished order, and to cover the whole range available. To do

o, for each polymer solution, more than 200 bubbles have been

nalyzed. Note that after each bubble rise and subsequent burst at

he surface, the fluid is let at rest for a couple of minutes. Indeed,

ue to the fluid shear-thinning behavior, the rising bubble gener-

tes a corridor of reduced viscosity in its wake (see for instance

18] ). Waiting for the fluid to rest and recover its initial viscosity

fter each bubble ensures that all bubbles rise in the same exper-

mental conditions. The bubble size is varied by tuning the ampli-

ude and velocity of the injection, and its volume V is determined

 posteriori . 

When a bubble pushes a confined wetting liquid, it has been

hown that the lubrication layer thickness h can be written [43] 

h 

e 
∼ Ca 2 / 3 

1 + Ca 2 / 3 
(3)

here Ca = ηU/σ is the capillary number, with η the fluid dy-

amic viscosity, U the bubble velocity and σ the surface tension.

n all our experiments, the capillary number is in the range Ca �
0.01–0.1], thus h / e ∼ Ca 2/3 � 1. As the lubrication layer thickness

s much smaller than the cell gap e , the bubble volume can there-

ore be computed as V � S.e , where S is the apparent surface of

he bubble. This latter is determined directly from the images, by

 simple contour detection. We therefore explore bubble volumes

anging from 0.01 and 1.5 mL. The center of mass of the bubble, M

coordinates ( y M 

, z M 

)] ( Fig. 1 ), is computed from the images. The

ubble vertical speed U is obtained by a linear fit of z M 

( t ) over the

entral part of the cell, ignoring the regions close to the injection

ozzle (transient regime) and close to the surface (where the bub-

le slows down). 

. Different regimes 

For the PEO concentrations c = 4 , 5 , 6 g/L, we report three dif-

erent regimes for the bubble shape and dynamics, depending on

he bubble volume. The volumes indicating the transition between

he different regimes in the following are given for the c = 4 g/L

olution, as an example. 

(1) For small volumes ( V < 0.1 mL), the capillary forces are pre-

dominant and the bubbles exhibit a round shape ( Fig. 3 a);

they rise vertically, without any apparent deformation in

their shape, at constant velocity U along most of their path

(except right at the injection nozzle and close to the fluid

free surface). 

(2) When increasing the volume (0.06 < V < 0.65 mL), the bub-

bles still follow a straight, vertical trajectory but display a

cusp at their rear ( Fig. 3 b). The existence of an apparent

cusp at the trailing end of a rising bubble has been widely

reported in 3D experiments, where the bubble rises freely in

a non-confined viscoelastic fluid (see for instance [11,15,40] ).

It has been pointed out as a consequence of the fluid vis-

coelastic properties, which generate a negative wake at the

bubble rear and leads to its teardrop shape [15,16,44] . Note

that in this regime, the bubble still follows a vertical trajec-

tory, and does not display any shape deformation during its

rise. Note also that there is an overlap with the round bub-

ble regime (0.06 < V < 0.1 mL). 

(3) Above a critical volume ( V > 0.65 mL), the bubble deforms,

departs from its vertical trajectory, and we report two insta-

bilities. Either the bubble deforms preferentially on one side

( Fig. 3 c), and displays a lateral deflection before recovering
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Fig. 3. Different regimes observed when increasing the bubble volume [here, c = 

4 g/L]. (a) Small circular bubble [ V = 0 . 02 mL]; (b) bubble exhibiting a cusp at its 

rear [ V = 0 . 57 mL]; (c) bubble deflection (note the flat front at angle α, see text) 

[ V = 0 . 89 mL]; (d) bubble fragmentation with a fingering instability of typical width 

λ [ V = 0 . 84 mL]. The bubbles in the upper panel (a,b) rise vertically, while the bub- 

bles in the lower panel (c,d) exhibit either a horizontal deflection in their trajectory 

(c) or a fragmentation (d). 
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Fig. 4. Vertical velocity of the bubble U as a function of its volume V [ c = 4 g/L, 

( � , round bubbles), ( 
� 

, cusped bubbles rising vertically), ( �, deflected bubbles), 

( �, fragmenting bubbles)]. Inset: velocity U ∗ of bubbles with a fixed volume V ∗ = 

0 . 5 mL as a function of the concentration. 
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a vertical trajectory, or a finger develops at the bubble front

( Fig. 3 d), leading to the bubble fragmentation. These insta-

bilities are not triggered at fixed locations in the experimen-

tal cell, and are therefore not due to the possible presence of

impurities on the glass plates. The dynamics of both instabil-

ities is further described in Section 4 . Note that, once again,

there is a slight overlap between the bubbles displaying a

deflection and the cusped bubbles rising vertically (0.65 < V

< 0.75 mL). 

For the lowest concentration ( c = 3 g/L), the third regime has

o be interpreted with caution. Indeed, for this solution, the vis-

osity is low and inertial instabilities appear, which superimpose

o the deflection or fragmentation instabilities. The bubble shape

uctuates, but does not display either clear oscillations as in the

ase of path instabilities due to the interaction between the bub-

le rise and the Kármán vortex generated in its wake, either in

imple or complex fluids [32,34,35] . Because these inertial insta-

ilities are not clearly identified, in the more detailed description

f the deflection and fragmentation instabilities ( Section 4.2 ) we

ill not consider this lower concentration. 

In the reference experiment with the purely Newtonian fluid

water-glycerol mixture), the bubbles have a round or elongated

hape but do not exhibit any deflection instability. They rise ver-

ically with a velocity up to 6 cm/s for the largest bubbles, of the

ame volume than the largest bubbles in the PEO experiment ( V �
.5 mL). For even larger bubbles, generated by pushing quickly on

he syringue, we do observe a fragmentation, as the capillary forces

re not sufficient anymore to maintain the bubble shape. However,

his fragmentation occurs immediately during the bubble forma-

ion at the nozzle, and therefore cannot be compared to the mech-

nism of flat front development reported for PEO solutions. This

onfirms that the origin of the instability previously described lies

n the non-Newtonian properties of the fluid. Fig. 4 displays the

volution of the bubble vertical velocity, U , as a function of its vol-

me V , for c = 4 g/L. Two regimes are reported: for low volumes ( V

 0.2 mL), the bubble velocity is proportional to its volume; then

he increase is much smaller, and the velocity reaches roughly a

lateau, although the cusped bubbles motion is still purely ver-
ical (up to 0.5–0.6 mL). The minimum observed around 0.8 mL

an be explained by the fact that the bubbles now exhibit insta-

ilities (deflection or fragmentation), meaning that their velocity is

ot purely vertical and thus, in absolute, larger that U . The vertical

elocity variations as a function of volume are similar for the other

EO concentrations, the curves are only shifted towards lower ve-

ocities when the concentration increases, in agreement with the

iscosity increase with respect to the concentration (see Fig. 2 ).

e define ( V 

∗, U 

∗) as the critical volume and velocity for which

he bubble reaches the vertical velocity plateau, which is arbitrar-

ly set at V ∗ = 0 . 5 mL (black arrow, Fig. 4 ). Fig. 4 , inset, shows the

volution of the critical velocity U 

∗ as a function of the PEO con-

entration. We report a strong decrease, going from U 

∗ � 8 cm s −1 

or c = 3 g/L to U 

∗ � 2 cm s −1 for c = 6 g/L. 

Note that we do not observe, in confined experiments, the ter-

inal velocity discontinuity observed when bubbles of increas-

ng volume rise in non-Newtonian, unconfined liquids [19,20] . This

atter has been interpreted in terms of a transition between the

tokes to the Hadamard-Rybczinski regime [19] , or the appearance

f the so-called negative wake behind the bubble [16,20] . Although

 gap exists in the data (no data points between 0.15 and 0.26 mL

n Fig. 4 ), it cannot be interpreted as a discontinuity. In the specific

xperiment at c = 4 g/L, it is due to the bubble injection method:

arge bubbles are generated by pushing quickly on the syringe, re-

ulting in the coalescence of small bubbles close to the injection

ozzle. We therefore observe a gap between the small bubbles

 V < 0.2 mL) generated individually and the larger bubbles ( V >

.25 mL) generated by smaller bubbles coalescence. In the next

ection, we will focus on the description of the instabilities oc-

urring when the bubble is above a critical volume, and exhibits

ither a deflection or a fragmentation. 

. Analysis of the instabilities 

.1. Instability threshold 

Here, we characterize the transition between the cusped bub-

les, rising vertically, and the bubbles displaying an instability (de-

ection or fragmentation). From the data presented in Fig. 4 , it is

ossible to quantify the volume and velocity above which the bub-

les exhibit an instability for each PEO concentration. To character-

ze the transition, we introduce two dimensionless numbers which

escribe the forces at stake in the system. First, the Reynolds

umber compares the inertial forces to viscous forces, Re = uL/ν,

here u and L are a typical velocity and length scale, respec-

ively, and ν = η/ρ the kinematic viscosity, with ρ � 10 0 0 kg m 

−3 
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Fig. 5. Bond number as a function of the Reynolds number at the transition be- 

tween bubbles rising vertically and bubbles exhibing an instability (deflection or 

fragmentation). The black arrow indicates the evolution of the PEO concentration 

[ c = 3 , 4 , 5 , 6 g/L]. Inset: Weissenberg number Wi at the transition as a function of 

the PEO concentration c (see text). 
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the fluid density. Then, due to the importance of capillary forces

in the system, we introduce the Bond number (or Eötvös num-

ber), which compares buoyancy to surface tension forces, Bo =
�ρgL ′ 2 /σ, where �ρ � ρ is the density difference between the

air in the bubble and the surrounding fluid, g = 9 . 81 m 

2 s −2 is the

gravitational acceleration, L ′ a typical length and σ the surface ten-

sion. For estimating these numbers, the difficulty arises in choosing

the right length scales, as well as the viscosity - which, we remind,

strongly varies with the shear rate, i.e. with the bubble size and

velocity. 

For the Reynolds number estimation, the following scales are

chosen: u ∼ U , the bubble velocity; L ∼ r = 

√ 

S/π, the bubble

equivalent radius estimated from its apparent surface, S , and η =
η( ̇ γ ) , where ˙ γ � U/r is the typical shear rate. 

Re ∼ ρUr 

η( ˙ γ ) 
(4)

where η( ̇ γ ) is estimated from each PEO rheology (see Fig. 2 and

Table 1 ). For the Bond number estimation, note that two length

scales are at stake. Indeed, the buoyancy forces depend directly

on the volume, which can be estimated here as V � S.e (see

Section 2.3 ), and S ∼ r 2 , which leads to 

Bo ∼ ρger 

σ
(5)

Fig. 5 displays the Bond vs. Reynolds number at the instability

threshold for the four PEO concentrations. Despite small variations,

the Bond number is roughly constant at the transition, Bo � 3.5 ±
1, although the Reynolds number varies strongly, from Re = 11 . 3 for

c = 3 g/L to Re = 0 . 3 for c = 6 g/L. This result tends to indicate that

the transition is controlled by the Bond number, i.e. mainly by the

bubble size, r . The point for c = 3 g/L has to be interpreted with

caution. Indeed, even if the bubbles exhibit a transition between a

stable teardrop shape rising vertically and the appearance of insta-

bilities, these latter are coupled to inertial instabilities deforming

the bubble shape (see Section 3 ). The independence of the transi-

tion on the Reynolds number is further discussed in Section 5 . 

Because the PEO solutions are viscoelastic (see Section 2.2 ), one

can wonder if the Weissenberg number, comparing the elastic and

viscous forces, may be a better parameter to explain the appear-

ance of instabilities. We thus estimate the Weissenberg number by

 i = τ ˙ γ (6)

where τ is a typical fluid relaxation time and ˙ γ � U/r the typi-

cal shear rate [45–47] , with U and r the velocity and radius of the
ubble at the transition. As previously, the difficulty arises in esti-

ating the right parameters, in particular the relaxation time, as a

olymeric liquid is generally characterized by a large spectrum of

elaxation times [46] . Here, we take τ as the relaxation time es-

imated with the Carreau–Yasuda model (see Section 2.2, Fig. 2 c,

nset and Table 1 ), as already proposed in previous work [44] . The

eissenberg number is typically between 5 and 15 ( Fig. 5 , inset),

ndicating a non-negligible elastic component. However, its vari-

tion is large at the transition, and its value does not indicate a

redominance of elastic forces respect to viscous forces right at

he appearance of the instabilities. The Bond number is therefore a

etter candidate to control the triggering of the instabilities. 

.2. Deflection vs. fragmentation 

In Fig. 6 , two sequences of images show the bubble dynam-

cs during the deflection or fragmentation process. Contrary to the

ubbles of smaller volumes (round or cusped bubbles), the bubble

eforms as follows. First, it develops a flat front at its head. This

at front can develop at any location in the experimental cell and

xhibits an apparently random angle, α, respect to the horizontal

 Fig. 3 c). In all experiments, no value of α larger than 40 ° was re-

orted. The behavior of the bubble – deflection or fragmentation –

s directly related to the front angle α. 

For α > 10 °, the bubble trajectory is systematically deviated in

he direction opposite to the flat front ( Fig. 6 c–g, upper panel).

t experiences a lateral motion, before recovering its initial shape

 Fig. 6 h, upper panel). After the deflection, it rises vertically over

ome distance, before developing a flat front again. Note that the

otion is not oscillatory. Indeed, the flat develops randomly on ei-

her side of the bubble, which can exhibit successive deflections

ithout any periodic alternance. An example of the temporal evo-

ution of the horizontal position of the bubble center of mass, y M 

,

an be seen in Fig. 7 , inset, where the bubble experiences four de-

ections along its rise, one towards y > 0, two towards y < 0 and

he last one towards y > 0. The reference y = 0 is taken here at

he vertical of the injection nozzle. 

For α < 4 °, the bubble dynamics is always a fragmentation,

hich occurs via the growth of a fingering instability on the bub-

le front ( Fig. 6 , lower panel). In this case, the capillary forces are

ot enough to maintain the bubble as a whole, the finger grows

ntil reaching the rear of the bubble ( Fig. 6 g, lower panel), which

hen fragments into two smaller bubbles ( Fig. 6 h, lower panel).

ote that these smaller bubbles can further experience deflection

r fragmentation if their volume is large enough. In the intermedi-

te range (4 ≤ α ≤ 10 °), the deflection and fragmentation phenom-

na overlap, and we cannot predict a priori the bubble dynamics. 

Fig. 7 displays the horizontal deviation �y of the deflected bub-

les as a function of the absolute value of the front angle which

evelops at the beginning of the deflection instability, | α|. �y here

epresent the absolute value of the horizontal motion, and is nor-

alized by the bubble equivalent radius, r (see Section 4.1 ). The

gure therefore compiles deflections towards both y > 0 and y < 0.

he gray zone for | α| < 4 ° represents the small values of the front

ngle for which the bubble systematically fragments. The horizon-

al motion of deflected bubbles (| α| > 4 °) is always of the order

f or smaller than their equivalent radius, and varies between 20%

for α ∼ 35 °) and 100% (for α ∼ 4 °) of this latter. Although the ex-

erimental points are scattered, the data can be roughly adjusted

y a parabolic shape, �y/r − 1 = ξα2 , where ξ � 6 . 5 × 10 −4 . 

In the case of bubble fragmentation, we focus on the instability

rowing from the bubble front towards the bubble tail (see Fig. 6 ,

ower panel, d–g). This finger-like instability can be characterized

y the typical width of the finger, measured at half height, when

s it fully developed ( Fig. 3 d). It is tempting to make an analogy

ith the classical Saffman–Taylor instability, where a finger devel-
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Fig. 6. Sequence of images for a rising bubble exhibiting a deflection ( upper panel , V = 1 . 0 mL) or fragmenting ( lower panel , V = 1 . 1 mL) [ c = 4 g/L]. The time relative to 

the first image (a) is indicated on the images (a–h). The black dashed line in the upper panel indicates the vertical trajectory of the rising bubble before its deflection. The 

images from the upper and lower sequences have been cropped to zoom on the bubbles and do not correspond to the same location in the experimental cell. 

Fig. 7. Horizontal motion of the deflected bubbles, �y , normalized to the bubble 

equivalent radius, r , as a function of the absolute value of the angle of the flat front, 

| α| [ c = 4 g/L]. The gray zone indicates the region α < 4 °, in which the bubbles 

fragment. The dashed line is a parabolic fit of the data (see text). Inset: Example of 

the horizontal position y M of the bubble center of mass for a deflected bubble. Note 

that the motion is not oscillatory, the deflection here being one right (towards y > 

0), twice left (towards y < 0) then one right again (towards y > 0). 
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Fig. 8. (a) Finger width λ (defined in Fig. 3 d) as a function of 1/ Ca 1/2 for fragment- 

ing bubbles, for the different PEO concentrations. The full and dotted lines repre- 

sent the linear stability analysis for Newtonian fluids in the classical Saffman–Taylor 

problem (see text). (b) λ as a function of the bubble equivalent radius, r = 

√ 

S/π, 

for the different PEO concentrations. The dashed line is the linear fit for all concen- 

trations, λ � 0.80 r . 

t  

r  

i  

i  

p  
ps when a less viscous fluid is pushed into a more viscous fluid

n a Hele-Shaw cell [21,22] . A linear stability analysis, for the sim-

le case of Newtonian fluids, shows that the Saffman–Taylor fin-

er growth rate is positive for l > l 0 , where l is the wavelength,

ith a maximum growth rate for l c = πe/ 
√ 

Ca , and l 0 = l c / 
√ 

3 [48] .

ere, Ca = ηU/σ is the capillary number. Note that if the bubble is

oo small, l < l 0 and the instability will not develop, in agreement

ith the observations. Fig. 8 a displays the width λ of the finger

btained in our experiments as a function of 1/ Ca 1/2 , as predicted

or the Newtonian fluid theory. To be consistent, Ca is computed

s Ca = η( ̇ γ ) U/σ, where ˙ γ ∼ U/r (see Section 4.1 ) and η( ̇ γ ) is es-

imated from the PEO rheology ( Fig. 2 and Table 1 ). Although it

s consistent with λ > l 0 , the finger width does not match with

= l c , meaning that the non-Newtonian effects are important for

hese polymer concentrations, and cannot be explained by a sim-

le modification of Darcy’s law [27] . For high polymer concen-

rations and strong non-Newtonian effects, previous studies have

ointed out either a finger narrowing, when shear-thinning effects

re dominant, or finger widening, when normal stress effects are

ominant [26,27] . The experimental results displayed in Fig. 8 tend
o show a finger width larger than the Newtonian prediction. This

esult is consistent with the fact that the Weissenberg number Wi

s larger than 1 when the instabilities are observed in our exper-

ments (see Section 4.1 ). However, these results have to be inter-

reted with caution. Indeed, on the one hand, the capillary num-
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ber has been estimated with a typical bubble velocity and radius.

The choice of U and L (here, L ∼ r , the bubble equivalent radius)

may affect the estimation of Ca . On the other hand, let us remem-

ber that our experimental configuration is far from the classical in-

stability of an infinite interface as in the Saffman–Taylor problem.

Note that, finally, the width of the finger does not seem to depend

much on the PEO concentration, and always ranges between λ � 1

and 2 cm. 

A more straightforward dependence is found by plotting λ as

a function of the bubble equivalent radius, r = 

√ 

S/π . All the data

roughly collapse on a straight line, leading to λ � 0.80 r , indepen-

dently of the PEO concentration. This results points out that the

bubble size is the dominant parameter controlling the fingering in-

stability. 

5. Discussion and conclusion 

Bubbles rising in a confined polymer solution develop instabil-

ities when their volume is larger than a critical volume. This in-

stability leads either to the bubble fragmentation, with the for-

mation of a finger growing until reaching the bubble tail, or to a

peculiar horizontal deflection of the bubble trajectory. Similar ex-

periments made with a Newtonian fluid, a water-glycerol mixture

with η = 0 . 1 Pa s, matching the average viscosity experienced by

the bubble for the PEO solution at c = 4 g/L, did not display any

bubble deflection, although fragmentation can be observed for very

large volumes - larger that the range used in the PEO experiments.

In this last case however, the fragmentation mechanism does not

result from the bubble rise and development of a flat front, but

from a transient process where capillary forces are not sufficient

anymore to maintain the bubble shape at the injection. 

The instabilities appearance is almost independent of the

Reynolds number. This independence has been previously reported

in the case of path instabilities of bubbles in Newtonian fluids,

where the bubble shape, and not the Reynolds number, was found

as the dominant parameter to trigger the instability [33] . Although

the nature of the instabilities and the experimental conditions are

different, it is interesting to point out that in both cases, the in-

stabilities seem to be driven by the bubble shape rather than its

inertia. Indeed, this work points out that the Bond number is the

possible dimensionless parameter responsible for the triggering of

the instability, while the finger width in the case of bubble frag-

mentation is directly controlled by the bubble size. 

The physical mechanism at the origin of the instabilities, how-

ever, still remains unknown. Because the instabilities are not ob-

served for the water-glycerol solutions, their possible origin lies in

the non-Newtonian properties of the fluid. Although elastic effects

and normal stresses are non-negligible, they do not seem to di-

rectly control the instability threshold. As a tentative explanation,

we propose that the existence of the flat front, which leads to the

instability development, is due to the fluid strong shear-thinning

properties. Indeed, as the fluid is shear-thinning, the local viscos-

ity is smaller on the sides of the bubble, where the larger shear

locates, than on its front, as was previously reported in 3D experi-

ments [49] . Hence, the bubble sides have a tendency to rise faster

that its front, causing the observed flattening at an angle α. If α is

large enough (typically, α > 4 °), the bubble deviates from its tra-

jectory, and the capillary forces are enough to prevent its fragmen-

tation. The lateral deviation, normalized by the equivalent bubble

radius, follows a decreasing parabolic trend as a function of α. No

explanation has been found at present for this behavior. If α < 4 °,
a phenomenon analogous to viscous fingering occurs. The capillary

forces are not strong enough to prevent the finger growth, until it

reaches the bubble tail and leads to the bubble fragmentation. An

overlap is reported between deflection and fragmentation for 4 <

α < 10 °. 
To confirm the above explanation, further work would be nec-

ssary to separate shear-thinning and elastic effects. Previous stud-

es on bubbles ascending in shear-thinning, inelastic fluids in non-

onfined columns pointed out the importance of shear-thinning ef-

ects on the bubbles hydrodynamics [50,51] , which could support

he origin of the instabilities in the confined geometry. 
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